Bits of Books - Books by Title


The Second Machine Age

Work, Progress, and Prosperity in a Time of Brilliant Technologies.

Erik Brynjolfsson and Andrew McAfee



For thousands of years, progress was very slow. Then, 200 years ago, it suddenly took off. And that was the Industrial Revn, and specifically, the steam engine. The steam engine let us overcome limitations of muscle power. And that led to factories and mass production; railways and mass transport. Now computers are taking us onto a second jump - allowing us to blast past previous limitations and taking us into new territory.

The New Division of Labor by Frank Levy and William Flew in 2004 put information processing on a spectrum. At one end were simple math tasks that require only application of clear rules. If that was all your job required, then computers have already taken that. But at the other end of that spectrum are jobs that can't be boiled down to simple rules, especially ones which require the human skill of pattern recognition. As an example, they cited a car driving in traffic. Such a job was never going to be taken by a computer in the foreseeable future, they said in 2004.

That was confirmed by the first DARPA (Defence Advanced Research Projects Agency) Grand Challenge: to build a completely autonomous vehicle that could complete a 150-mile course through Mojave Desert. The first run, in 2004, was a debacle. 15 vehicles entered; 2 didn't make it to the start line, one flipped over in the start area, and the "winner" only managed 7 miles out of the 150 before veering off course and into a ditch.

But by 2012 Google's automated cars could safely drive anywhere Google had meticulously mapped the environment, and were licensed for the road in Nevada.

We are at an inflection point - a time when the rules change dramatically.

Effect of exponential growth. Moore's Law - basically, the amount of computing power per dollar is doubling every (year/18 months). Every so often there's a prediction that Moore's Law because of some fundamental physical fact. But "brilliant tinkering" has found ways around the various roadblocks every time.

There has been no time in history where cars or planes got twice as fast or twice as efficient every year, so we have trouble understanding impact of this constant doubling. Best way to explain is the grain of rice on each square of chessboard story.

The chessboard story is impt because the board has two halves. We can get our heads around the numbers on the first half of the chessboard. After 32 squares the emperor had 'only' given away 4 billion grains of rice - about the yield of one large field. But when get into second half of the board, the numbers quickly get weird - way past our comprehension.

The steam engine also led to exponential growth over the following 200 years, but only went though 3 or 4 doublings in that period. At that rate it would take a thousand years to get into the second half of the board. But with the Computer Revolution, we are already there - self-driving cars, Watson medical diagnostics, universal communicators that are also cameras, computers, translators and tvs.

And main reason these devices exist is that for the first time, the digital components are cheap and fast enough to make them. ASCI Red was world's fastest supercomputer in 1996 - calcs at 1.8 teraflops. Cost $55m and was size of a tennis court. 2006 another computer hit 1.8 teraflops in computing speed: the $500 Sony PlayStation 3. In 2011 iPad had same speed. But it also had 2 cameras, one of them a high-def video camera, phone and WiFi connections, GPS, compass, accelerometer and gyroscope, and fitted all of this into a device about size of a magazine. This is the second half of the board.

The invisible economy - free digital goods, sharing, intangibles. Music as example. Spending has dropped, but volume huge increase. Similar reading online news instead of buying paper or magazine, placing classifieds on Craigslist or TradeMe. When a traveller calls home on Skype, the cost is not measured anywhere, but the value is huge. Services like this add value to the economy but nothing to GDP metrics.

Power of CrowdSourcing. Partly the huge number of extra eyeballs, and partly the inclusion of 'non-experts' or 'non-credentialled' volunteers. In many cases find it actually helps to have education or experience in fields which on surface, would not be relevant. Kaggle site where organizations submit data-intensive problems and ask for better predictive algorithims. Example of need for computer grading of student essays. Eleven established ed testing companies competed against 'novices'. None of top three finishers had any experience with essay grading or natural language processing, and the only experience they had with artificial intelligence was the free Stanford AI online course, which apparently gave them all the skills they needed.

Quirky gets ideas from the Crowd, and relies on them to vote on whether to proceed, conduct research, suggest improvements, names, brand and price. Quirky does final manufacture and distribution, and distributes 30% of revenue to those involved in development (original idea worth 42%, then rest spread amongst others who contributed at different stages).

Photography - Kodak once employed 150,000 people plus indirectly employed thousands more in supply and retail channels. Made its founder very rich, but also provided middle class jobs for generations of people. Instagram used 16 workers to create an app for 130 million customers to upload 16 billion (and counting) photos. Fifteen months after founding, it was sold to Facebook for a billion dollars. A few months before, Kodak had gone bankrupt.

More books on Business

Winner Take All Economy:

JK Rowling first billionaire author. Homer Shakespeare and Dickens all earned much less. Homer told great stories, but he could earn no more in a night than, say, 50 people might pay for an evening's entertainment. Shakespeare did a bit better - the Globe could hold about 3000 people a night, and, unlike Homer, S didn't have to be there. His words were leveraged. Dickens could leverage even further, because books could reach millions, and were cheaper to produce than actors, so he could get a greater share of the revenue. But technology has supercharged the ability of authors like JK Rowling via globalization and digitization. Her stories can be told multiple times across new formats like movies and video games, but each can be transmitted globally at trivial cost.

More books on Success

When digitisation becomes feasible, the superstars get a lot more and the second-bests have a hard time competing. In 1800 even the best singers could perform for a few thousand people at a time. Other, inferior singers still had a market for their talents. But when technology allows the very best to capture virtually the whole market, being almost-as-good matters little.

Even a small difference becomes crucial - customers pay the best map direction app; there is no demand for the tenth best one, even at a tenth of the price.

There are 2 categories of markets. The first is one-to-many: a single web site can provide a service to millions of customers. Second category is personal - nursing or gardening - where each provider, no matter how skilled, can only fulfill a tiny fraction of worldwide demand.

And there is nowhere to hide for second-rate products or providers. In a traditional camera store, cameras are not typically ranked 1 - 10. But they are on comparison websites, where customer sees at a glance which ones have all the features, and the ones missing just one or two of those features drop so far down the list that they suffer disproportionally lower sales.

The Bounty and the Spread

At the same time as the bounty has increased, so has the spread between top and bottom of economy. Remorseless logic - if work that a man does in an hour can be done by a machine for a dollar, then man must either accept a wage of a dollar an hour, or else find some other work.

One argument that we shouldn't get too worried about increasing spread, because everyone is getting greater bounty. The TVs are better, the cars are safer, the cellphones are amazing, people are living longer etc. But in fact it's clear that while the (very) rich are getting richer, most people are going backwards.

What's the best way to deal with this? Cheapest (with least bureaucratic waste) solution is to just give everybody a cheque every year, in the way Alaska does. Variations of this involved tax rebates, because many object to tax dollars going to people who choose not to work.

Also some truth in Voltaire quote that "Work saves a man from three great evils: boredom, vice and need." For many, work gives a man his dignity, sense of self-worth. This confirmed by comparisons of poor communities where varying numbers employed.

More books on Work

Why Nations Fail looked for the origins of power, prosperity and poverty. Concluded that the reasons were not geography, natural resources or culture. Instead institutions such as democracy, property rights and the rule of law. Inclusive ones bring prosperity; extractive ones - where the entrenched elite bend the rules of the game to benefit themselves - bring poverty.

More books on Politics

Conventional attitude that US jobs being taken by cheap Chinese labor. But in fact, in both US and China, factory jobs being replaced by mechanization. Not just factories - overseas call centres being replaced by sophisticated interactive voice-response systems.

Downward market pressure. When medical billing specialists had their jobs taken by automation, they started taking jobs that lower qualified workers used to have, such as home health aides. Traditional school system originated in the British Empire. To administer the huge sprawling edifice they needed a global bureaucracy. They had to be able to write clearly, to read, and to do arithmetic. And they had to be identical, so you could pick one up in NZ and drop him in Canada and he would be instantly functional.

The Victorians engineered a school system that is still with us today, turning out identical people for a machine that no longer exists. Today we have computers to do the drudge work, and a few to guide the computers. Those few don't need to be able to write or compute, but they do need to be able to read, and in fact read discerningly.

Found that when gave basic smartphones to illiterate village children, they quickly organized self-learning environments based on trial and error and teaching each other skills. This is basically the Montessori method, which has produced alumni such as Google's Larry Page and Sergey Brin, Amazon's Jeff Bezos and Wikipedia's Jimmy Wales.

Toady's American student doesn't have to read widely or deeply. They spend very little time studying, and not much in terms of reading or writing.

More books on Education

The number of words in English language increased by more than 70% between 1950 and 2000.

(Atlantic)

The advances we've seen in the past few years - cars that drive themselves, useful humanoid robots, speech recognition and synthesis systems, 3D printers, Jeopardy!-champion computers - are not the crowning achievements of the computer era. They're the warm-up acts. As we move deeper into the second machine age we'll see more and more such wonders, and they'll become more and more impressive.

How can we be so sure? Because the exponential, digital, and recombinant powers of the second machine age have made it possible for humanity to create two of the most important one-time events in our history: the emergence of real, useful artificial intelligence (AI) and the connection of most of the people on the planet via a common digital network.

Either of these advances alone would fundamentally change our growth prospects. When combined, they're more important than anything since the Industrial Revolution, which forever transformed how physical work was done.

Thinking Machines, Available now

Digital machines have escaped their narrow confines and started to demonstrate broad abilities in pattern recognition, complex communication, and other domains that used to be exclusively human. We've recently seen great progress in natural language processing, machine learning (the ability of a computer to automatically refine its methods and improve its results as it gets more data), computer vision, simultaneous localization and mapping, and many other areas.

We're going to see artificial intelligence do more and more, and as this happens costs will go down, outcomes will improve, and our lives will get better. Soon countless pieces of AI will be working on our behalf, often in the background. They'll help us in areas ranging from trivial to substantive to life changing. Trivial uses of AI include recognizing our friends' faces in photos and recommending products. More substantive ones include automatically driving cars on the road, guiding robots in warehouses, and better matching jobs and job seekers. But these remarkable advances pale against the life-changing potential of artificial intelligence.

We're going to see artificial intelligence do more and more, and as this happens costs will go down, outcomes will improve, and our lives will get better.

To take just one recent example, innovators at the Israeli company OrCam have combined a small but powerful computer, digital sensors, and excellent algorithms to give key aspects of sight to the visually impaired (a population numbering more than twenty million in the United States alone). A user of the OrCam system, which was introduced in 2013, clips onto her glasses a combination of a tiny digital camera and speaker that works by conducting sound waves through the bones of the head. If she points her finger at a source of text such as a billboard, package of food, or newspaper article, the computer immediately analyzes the images the camera sends to it, then reads the text to her via the speaker.

Reading text 'in the wild' - in a variety of fonts, sizes, surfaces, and lighting conditions - has historically been yet another area where humans outpaced even the most advanced hardware and software. OrCam and similar innovations show that this is no longer the case, and that here again technology is racing ahead. As it does, it will help millions of people lead fuller lives. The OrCam costs about $2,500 - the price of a good hearing aid - and is certain to become cheaper over time.

Digital technologies are also restoring hearing to the deaf via cochlear implants and will probably bring sight back to the fully blind; the FDA recently approved a first-generation retinal implant. AI's benefits extend even to quadriplegics, since wheelchairs can now be controlled by thoughts. Considered objectively, these advances are something close to miracles - and they're still in their infancy.

Billions of Innovators, Coming Soon

In addition to powerful and useful AI, the other recent development that promises to further accelerate the second machine age is the digital interconnection of the planet's people. There is no better resource for improving the world and bettering the state of humanity than the world's humans - all 7.1 billion of us. Our good ideas and innovations will address the challenges that arise, improve the quality of our lives, allow us to live more lightly on the planet, and help us take better care of one another. It is a remarkable and unmistakable fact that, with the exception of climate change, virtually all environmental, social, and individual indicators of health have improved over time, even as human population has increased.

This improvement is not a lucky coincidence; it is cause and effect. Things have gotten better because there are more people, who in total have more good ideas that improve our overall lot. The economist Julian Simon was one of the first to make this optimistic argument, and he advanced it repeatedly and forcefully throughout his career. He wrote, "It is your mind that matters economically, as much or more than your mouth or hands. In the long run, the most important economic effect of population size and growth is the contribution of additional people to our stock of useful knowledge. And this contribution is large enough in the long run to overcome all the costs of population growth."

We do have one quibble with Simon, however. He wrote that, "The main fuel to speed the world's progress is our stock of knowledge, and the brake is our lack of imagination." We agree about the fuel but disagree about the brake. The main impediment to progress has been that, until quite recently, a sizable portion of the world's people had no effective way to access the world's stock of knowledge or to add to it.

In the industrialized West we have long been accustomed to having libraries, telephones, and computers at our disposal, but these have been unimaginable luxuries to the people of the developing world. That situation is rapidly changing. In 2000, for example, there were approximately seven hundred million mobile phone subscriptions in the world, fewer than 30 percent of which were in developing countries.

By 2012 there were more than six billion subscriptions, over 75 percent of which were in the developing world. The World Bank estimates that three-quarters of the people on the planet now have access to a mobile phone, and that in some countries mobile telephony is more widespread than electricity or clean water.

The first mobile phones bought and sold in the developing world were capable of little more than voice calls and text messages, yet even these simple devices could make a significant difference. Between 1997 and 2001 the economist Robert Jensen studied a set of coastal villages in Kerala, India, where fishing was the main industry.10 Jensen gathered data both before and after mobile phone service was introduced, and the changes he documented are remarkable. Fish prices stabilized immediately after phones were introduced, and even though these prices dropped on average, fishermen's profits actually increased because they were able to eliminate the waste that occurred when they took their fish to markets that already had enough supply for the day. The overall economic well-being of both buyers and sellers improved, and Jensen was able to tie these gains directly to the phones themselves.

Now, of course, even the most basic phones sold in the developing world are more powerful than the ones used by Kerala's fisherman over a decade ago. And cheap mobile devices keep improving. Technology analysis firm IDC forecasts that smartphones will outsell feature phones in the near future, and will make up about two-thirds of all sales by 2017.

This shift is due to continued simultaneous performance improvements and cost declines in both mobile phone devices and networks, and it has an important consequence: it will bring billions of people into the community of potential knowledge creators, problem solvers, and innovators.

'Infinite Computing' and Beyond

Today, people with connected smartphones or tablets anywhere in the world have access to many (if not most) of the same communication resources and information that we do while sitting in our offices at MIT. They can search the Web and browse Wikipedia. They can follow online courses, some of them taught by the best in the academic world. They can share their insights on blogs, Facebook, Twitter, and many other services, most of which are free. They can even conduct sophisticated data analyses using cloud resources such as Amazon Web Services and R, an open source application for statistics.13 In short, they can be full contributors in the work of innovation and knowledge creation, taking advantage of what Autodesk CEO Carl Bass calls 'infinite computing.'

Until quite recently rapid communication, information acquisition, and knowledge sharing, especially over long distances, were essentially limited to the planet's elite. Now they're much more democratic and egalitarian, and getting more so all the time. The journalist A. J. Liebling famously remarked that, 'Freedom of the press is limited to those who own one.' It is no exaggeration to say that billions of people will soon have a printing press, reference library, school, and computer all at their fingertips.

We believe that this development will boost human progress. We can't predict exactly what new insights, products, and solutions will arrive in the coming years, but we are fully confident that they'll be impressive. The second machine age will be characterized by countless instances of machine intelligence and billions of interconnected brains working together to better understand and improve our world. It will make mockery out of all that came before.

More books on Technology

(LRB)

In 1996, in response to the 1992 Russo-American moratorium on nuclear testing, the US government started a programme called the Accelerated Strategic Computing Initiative. The suspension of testing had created a need to be able to run complex computer simulations of how old weapons were ageing, for safety reasons, and also - it's a dangerous world out there! – to design new weapons without breaching the terms of the moratorium. To do that, ASCI needed more computing power than could be delivered by any existing machine. Its response was to commission a computer called ASCI Red, designed to be the first supercomputer to process more than one teraflop. A 'flop' is a floating point operation, i.e. a calculation involving numbers which include decimal points (these are computationally much more demanding than calculations involving binary ones and zeros). A teraflop is a trillion such calculations per second. Once Red was up and running at full speed, by 1997, it really was a specimen. Its power was such that it could process 1.8 teraflops. That's 18 followed by 11 zeros. Red continued to be the most powerful supercomputer in the world until about the end of 2000.

I was playing on Red only yesterday - I wasn't really, but I did have a go on a machine that can process 1.8 teraflops. This Red equivalent is called the PS3: it was launched by Sony in 2005 and went on sale in 2006. Red was only a little smaller than a tennis court, used as much electricity as eight hundred houses, and cost $55 million. The PS3 fits underneath a television, runs off a normal power socket, and you can buy one for under two hundred quid. Within a decade, a computer able to process 1.8 teraflops went from being something that could only be made by the world's richest government for purposes at the furthest reaches of computational possibility, to something a teenager could reasonably expect to find under the Christmas tree.

The force at work here is a principle known as Moore's law. This isn't really a law at all, but rather the extrapolation of an observation made by Gordon Moore, one of the founders of the computer chip company Intel. By 1965, Moore had noticed that silicon chips had for a number of years been getting more powerful, in relation to their price, at a remarkably consistent rate. He published a paper predicting that they would go on doing so 'for at least ten years'. That might sound mild, but it was, as Erik Brynjolfsson and Andrew McAfee point out in their fascinating book, The Second Machine Age, actually a very bold statement, since it implied that by 1975, computer chips would be five hundred times more powerful for the same price. 'Integrated circuits,' Moore said, would 'lead to such wonders as home computers - or at least terminals connected to a central computer - automatic controls for automobiles and personal portable communications equipment'. Right on all three. If anything he was too cautious. Moore's law, now usually stated as the principle that computer chips double in power or halve in price every 18 months, has continued operating for half a century. This is what has led to such now ordinary miracles as the jump from the Red to the PS3. There has never been an invention in human history which has improved at such speed over such a long period.

In parallel with computing power having grown exponentially and become vastly cheaper, humans have also got better at programming. A high-profile piece of evidence to that effect came in 2011, with the public victory of a project called Watson, run by IBM. The idea behind Watson was to build a computer that could understand ordinary language well enough to win a popular TV quiz show called Jeopardy!, playing against not just ordinary contestants, but record-holding champions. This would be, as Brynjolfsson and McAfee say, 'a stern test of a computer's pattern matching and complex communication abilities', much more demanding than another IBM project, the chess computer Deep Blue, which won a match against the world champion Gary Kasparov in 1997. Chess is vulnerable to brute computational force; I have a program on my smartphone which can easily beat the best chess player in the world. General knowledge-based quizzes, particularly ones like Jeopardy! with a colloquial and allusive component, are much less easily solved by sheer computing power.

The outcome is already a locus classicus in the study of computing, robotics and futurism, and is discussed at length in both John Kelly and Steve Hamm's Smart Machines and Tyler Cowen's Average Is Over. Watson won, easily. Its performance wasn't perfect: it thought Toronto was in the US, and when asked about a word with the double meaning 'stylish elegance, or students who all graduated in the same year', it answered 'chic', not 'class'. Still, its cash score at the end of the two-day contest was more than three times higher than that of the best of its human opponents. 'Quiz-show contestant may be the first job made redundant by Watson,' one of the vanquished men said, 'but I'm sure it won't be the last.'

Watson's achievement is a sign of how much progress has been made in machine learning, the process by which computer algorithms self-improve at tasks involving analysis and prediction. The techniques involved are primarily statistical: through trial and error the machine learns which answer has the highest probability of being correct. That sounds rough and ready, but because, as per Moore's law, computers have become so astonishingly powerful, the loops of trial and error can take place at great speed, and the machine can quickly improve out of all recognition. The process can be seen at work in Google's translation software. Translate was a page on Google into which you could type text and see it rendered into a short list of other languages. When the software first launched, in 2006, it was an impressive joke: impressive because it existed at all, but a joke because the translations were wildly inaccurate and syntactically garbled. If you gave up on Google Translate at that point, you have missed many changes. The latest version of Translate comes in the form of a smartphone app, into which you can not only type but also speak text, and not just read the answer but also have it spoken aloud. The app can scan text using the phone's camera, and translate that too. For a language you know, and especially with text of any length, Translate is still somewhere between poor and embarrassing - though handy nonetheless, if you momentarily can't remember what the German is for 'collateralised debt obligation' or 'haemorrhoid'. For a language you don't know, it can be invaluable; and it's worth taking a moment to reflect on the marvel that you can install on your phone a device which will translate Malay into Igbo, or Hungarian into Japanese, or indeed anything into anything, for free.

Google Translate hasn't got better because roomfuls of impecunious polymaths have been spending man-years copying out and cross-referencing vocabulary lists. Its improvement is a triumph of machine learning. The software matches texts in parallel languages, so that its learning is a process of finding which text is statistically most likely to match the text in another language. Translate has hoovered up gigantic quantities of parallel texts into its database. A particularly fertile source of these useful things, apparently, is the European Union's set of official publications, which are translated into all Community languages. There was a point a few years ago when the software, after improving for a bit, stopped doing so, as the harvesting of parallel texts began to gather in texts which had already been translated by Translate. I don't know how, but they must have fixed that problem, because it's been getting better again. You could argue that this isn't really 'learning' at all, and indeed it probably isn't in any human sense. The process is analogous, though, in terms of the outcome, if that outcome is defined as getting better at a specific task.

Put all this together, and we can start to see why many people think a big shift is about to come in the impact of computing and technology on our daily lives. Computers have got dramatically more powerful and become so cheap that they are effectively ubiquitous. So have the sensors they use to monitor the physical world. The software they run has improved dramatically too. We are, Brynjolfsson and McAfee argue, on the verge of a new industrial revolution, one which will have as much impact on the world as the first one. Whole categories of work will be transformed by the power of computing, and in particular by the impact of robots.

For many years the problem with robots has been that computers are very good at things we find difficult but very bad at things we find easy. They are brilliant at chess but terrible at the cognitive skills we take for granted, one of the most important being something scientists call SLAM, for 'simultaneous localisation and mapping': the ability to look at a space and see it and know how to move through it, all simultaneously, and with good recall. That, and other skills essential to advanced robotics, is something computers are useless at. A robot chess player can thrash the best chess player in the world, but can't (or couldn't) match the motor and perceptual skills of a one-year-old baby. A famous demonstration of the principle came in 2006, when scientists at Honda staged a public unveiling of their amazing new healthcare robot, the Asimo. Asimo is short (4'3") and white with a black facemask and a metal backpack. It resembles an unusually small astronaut. In the video Asimo advances towards a staircase and starts climbing while turning his face towards the audience as if to say, à la Bender from Futurama, 'check out my shiny metal ass'. He goes up two steps and then falls over. Tittering ensues. It is evident that a new day in robotics has not yet dawned.

That, though, was nine years ago, and Moore's law and machine learning have been at work. The new generation of robots are not ridiculous. Take a look online at the latest generation of Kiva robots employed by Amazon in the 'fulfilment centres' where it makes up and dispatches its parcels. (Though pause first to enjoy the full resonance of 'fulfilment centres'.) The robots are low, slow, accessorised in a friendly orange. They can lift three thousand pounds at a time and carry an entire stack of shelves in one go. Directed wirelessly along preprogrammed paths, they swivel and dance around each other with surprising elegance, then pick up their packages according to the instructions printed on automatically scanned barcodes. They are not alarming, but they are inexorable, and they aren't going away: the labour being done by these robots is work that will never again be done by people. It looks like the future predicted by Wassily Leontief, a Nobel laureate in economics, who said in 1983 that 'the role of humans as the most important factor of production is bound to diminish in the same way that the role of horses in agricultural production was first diminished and then eliminated by the introduction of tractors.'

Large categories of work, especially work that is mechanically precise and repetitive, have already been automated; technologists are working on the other categories, too.

Rodney Brooks, who co-founded iRobot, noticed something else about modern, highly automated factory floors: people are scarce, but they're not absent. And a lot of the work they do is repetitive and mindless. On a line that fills up jelly jars, for example, machines squirt a precise amount of jelly into each jar, screw on the top, and stick on the label, but a person places the empty jars on the conveyor belt to start the process. Why hasn't this step been automated? Because in this case the jars are delivered to the line 12 at a time in cardboard boxes that don't hold them firmly in place. This imprecision presents no problem to a person (who simply sees the jars in the box, grabs them, and puts them on the conveyor belt), but traditional industrial automation has great difficulty with jelly jars that don't show up in exactly the same place every time.

It's that problem, and others like it, that many observers think robots are beginning to solve. This isn't just a First World issue. The Taiwanese company Foxconn is the world's largest manufacturer of consumer electronics. If you're reading this on an electronic gadget, there is a good chance that it was made in one of Foxconn's factories, since the firm makes iPhones, iPads, iPods, Kindles, Dell parts, and phones for Nokia and Motorola and Microsoft. It employs about 1.2 million people around the world, many of them in China. At least that's how many it currently employs, but the company's founder, Terry Gou, has spoken of an ambition to buy and deploy a million robots in the company's factories. This is nowhere near happening at the moment, but the very fact that the plan has been outlined makes the point: it isn't only jobs in the rich part of the world that are at risk from robots. The kind of work done in most factories, and anywhere else that requires repetitive manual labour, is going, going, and about to be gone.

And it's not just manual labour. Consider this report from the Associated Press:

CUPERTINO, Calif. (AP) Apple Inc. (AAPL) on Tuesday reported fiscal first-quarter net income of $18.02 billion.

The Cupertino, California-based company said it had profit of $3.06 per share.

The results surpassed Wall Street expectations … The maker of iPhones, iPads and other products posted revenue of $74.6 billion in the period, also exceeding Street forecasts. Analysts expected $67.38 billion.

For the current quarter ending in March, Apple said it expects revenue in the range of $52 billion to $55 billion. Analysts surveyed by Zacks had expected revenue of $53.65 billion.

Apple shares have declined 1 per cent since the beginning of the year, while the Standard & Poor's 500 index has declined slightly more than 1 per cent. In the final minutes of trading on Tuesday, shares hit $109.14, an increase of 39 per cent in the last 12 months.

We'll be returning to the content of that news story in a moment. For now, the fact to concentrate on is that it wasn't written by a human being. This has been a joke or riff for so long - such and such 'reads like it was written by a computer' - that it's difficult to get one's head around the fact that computer-generated news has become a reality. A company called Automated Insights owns the software which wrote that AP story. Automated Insights specialises in generating automatic reports on company earnings: it takes the raw data and turns them into a news piece. The prose is not Updikean, but it's better than E.L. James, and it gets the job done, since that job is very narrowly defined: to tell readers what Apple's results are. The thing is, though, that quite a few traditionally white-collar jobs are in essence just as mechanical and formulaic as writing a news story about a company earnings report. We are used to the thought that the kind of work done by assembly-line workers in a factory will be automated. We're less used to the thought that the kinds of work done by clerks, or lawyers, or financial analysts, or journalists, or librarians, can be automated. The fact is that it can be, and will be, and in many cases already is. Tyler Cowen's Average Is Over points towards a future in which all the rewards are likely to be captured by people at the top of the income distribution, especially those who become most adept at working with smart machines.

So what's going to happen now? Your preferred answer depends on your view of history, though it also depends on whether you think the lessons of history are useful in economics. The authors of these books are interested in history, but plenty of economists aren't; a hostility to history is, to an outsider, a peculiarly strong bias in the field. It's connected, I suspect, to an ambition to be considered a science. If economics is a science, the lessons of history are 'in the equations' - they are already incorporated in the mathematical models. I don't think it's glib to say that a reluctance to learn from history is one of the reasons economics is so bad at predicting the future.

One historically informed view of the present moment says that the new industrial revolution has already happened. Computers are not a new invention, yet their impact on economic growth has been slow to manifest itself. Bob Solow, another Nobel laureate quoted by Brynjolfsson and McAfee, observed as long ago as 1987 that 'we see the computer age everywhere, except in the productivity statistics.' The most thorough and considered version of this argument is in the work of Robert Gordon, an American economist who in 2012 published a provocative and compelling paper called 'Is US Economic Growth Over?' in which he contrasted the impact of computing and information technology with the effect of the second industrial revolution, between 1875 and 1900, which brought electric lightbulbs and the electric power station, the internal combustion engine, the telephone, radio, recorded music and cinema. As he points out in a Wall Street Journal op-ed, it also introduced 'running water and indoor plumbing, the greatest event in the history of female liberation, as women were freed from carrying literally tons of water each year'. (A non-economist might be tempted to ask why it was the women were carrying the water in the first place.) Gordon's view is that we coasted on the aftermaths and sequelae of these inventions until about 1970, when the computer revolution took over and allowed the economy to remain on our historic path of 2 per cent annual growth. Computers replaced human labour and thus contributed to productivity, but the bulk of these benefits came early in the Electronics Era. In the 1960s, mainframe computers churned out bank statements and telephone bills, reducing clerical labour. In the 1970s, memory typewriters replaced repetitive retyping by armies of legal clerks. In the 1980s, PCs with word-wrap were introduced, as were ATMs that replaced bank tellers and barcode scanning that replaced retail workers.

These were real and important changes, and got rid of a lot of drudgery. What happened subsequently, though, with the impact of Moore's law and miniaturisation, was a little different:

The iPod replaced the CD Walkman; the smartphone replaced the garden-variety 'dumb' cellphone with functions that in part replaced desktop and laptop computers; and the iPad provided further competition with traditional personal computers. These innovations were enthusiastically adopted, but they provided new opportunities for consumption on the job and in leisure hours rather than a continuation of the historical tradition of replacing human labour with machines.

In other words, most of the real productivity benefits of the computing revolution happened a few decades ago. We have more and cooler devices, but what these gadgets do, for the most part, is entertain and distract us. They do nothing to aid productivity, and may even diminish it. The lightbulb changed the world; Facebook is just a way of letting people click 'like' on photos of cats that resemble Colonel Gaddafi. On this view, Moore's law has mainly led to an explosion of digital activity of a not very consequential type. Real change would involve something like a ten or hundredfold increase in the potential of batteries; but that requires progress in chemistry, which is a lot harder than cramming more circuits into a silicon chip.

Gordon's analysis is in line with a longstanding vein of thinking concerning 'technological unemployment'. The term was coined by Keynes to describe 'our discovery of means of economising the use of labour outrunning the pace at which we can find new uses for labour'. It's a form of progress which makes jobs go away through the sheer speed of its impact. A foundational axiom of economics is that economic processes are based on human wants; and since human wants are infinite, the process of supplying them is also infinite. The economy won't come to a halt until human wants do. Since that will never happen, there will be enough work for everyone, for ever, except during occasional recessions and depressions and crises.

The reassuring lesson from history seems to confirm that. Although it might be possible in theory for some new invention to come along and make a category of work disappear so quickly that there is no alternative work to replace it, in practice that hasn't happened. Innovation takes away some jobs and replaces them with others. Just to be clear: the disappearance of work happens to individuals, not to entire economies. A job lost in one place is replaced by a new job, which may be somewhere else. In 1810, agriculture employed 90 per cent of the American workforce. A hundred years later, the figure was about 30 per cent (today it's less than 2 per cent). That might sound like a recipe for chaotic disruption and endemic unemployment, but the US economy managed the transition fine, thanks in large part to the effect of the technologies mentioned by Robert Gordon (plus the railways). So, by extension and analogy, maybe we don't need to fear technological unemployment this time either.

That isn't the view forcefully put by Brynjolfsson, McAfee and Cowen. In effect, the two sides disagree about where we are in relation to the impact of the IT revolution: Gordon thinks it's already happened, the other writers that it's about to. The point they all make - which, again, is an argument by extension and analogy - is that the big effects of the first industrial revolution took a long time to arrive. Watt improved the efficiency of the steam engine by 300 per cent between 1765 and 1776, but it took decades for that transformation to have its full effect on the economy - railroads didn't arrive in their full glory until the latter part of the 19th century. In Gordon's view, it took at least 150 years for the first industrial revolution to have its 'full range of effects'. He doesn't see a similar trajectory this time, but what if he's wrong? What if we are a few decades into the new industrial revolution, living in a contemporary version of 1780, a few decades after the first successful steam engine (1712) but still some way before the first commercially successful steam-powered railway journey (1804)?

It's a good question. What if that's where we are, and - to use the shorthand phrase relished by economists and futurists - 'robots are going to eat all the jobs'? A thorough, considered and disconcerting study of that possibility was undertaken by two Oxford economists, Carl Benedikt Frey and Michael Osborne, in a paper from 2013 called 'The Future of Employment: How Susceptible Are Jobs to Computerisation?' They came up with some new mathematical and statistical techniques to calculate the likely impact of technological change on a sweeping range of 702 occupations, from podiatrists to tour guides, animal trainers to personal finance advisers and floor sanders. It ranks them, from 1 (you'll be fine) to 702 (best start shining up the CV). In case you're wondering, here are the top five occupations:

1. Recreational Therapists
2. First-Line Supervisors of Mechanics, Installers and Repairers
3. Emergency Management Directors
4. Mental Health and Substance Abuse Social Workers
5. Audiologists

And here are the bottom five:

698. Insurance Underwriters
699. Mathematical Technicians
700. Sewers, Hand
701. Title Examiners, Abstractors and Searchers
702. Telemarketers

The theme is clear: human-to-human interaction and judgment is in demand, routine tasks are not. Some of the judgments seem odd: is it really the case that choreographers come in at 13, ahead of physicians and surgeons at 15, and a long way ahead of, say, anthropologists and archaeologists at 39, not to mention writers at 123 and editors at 140? Nonetheless, the paper's methodology is sober and it makes clear just how far-ranging the impact of technological change is in white as well as blue-collar work. Software is having a big impact on the legal profession, for instance: the work of scanning documents for forensic mentions and matches is dramatically cheaper when done by machines. (I've seen specialist legal search software at work, and it's really something.) There are similar things happening in financial services and medical record-keeping. The news that Average Is Over is, for most of us, bad news, since most of us, by definition, are average.

Frey and Osborne's conclusion is stark. In the next two decades, 47 per cent of employment is 'in the high-risk category', meaning it is 'potentially automatable'. Interestingly, though not especially cheeringly, it is mainly less well-paid workers who are most at risk. Recent decades have seen a polarisation in the job market, with increased employment at the top and bottom of the pay distribution, and a squeeze on middle incomes. 'Rather than reducing the demand for middle-income occupations, which has been the pattern over the past decades, our model predicts that computerisation will mainly substitute for low-skill and low-wage jobs in the near future. By contrast, high-skill and high-wage occupations are the least susceptible to computer capital.' So the poor will be hurt, the middle will do slightly better than it has been doing, and the rich - surprise! - will be fine.

Note that in this future world, productivity will go up sharply. Productivity is the amount produced per worker per hour. It is the single most important number in determining whether a country is getting richer or poorer. GDP gets more attention, but is often misleading, since other things being equal, GDP goes up when the population goes up: you can have rising GDP and falling living standards if the population is growing. Productivity is a more accurate measure of trends in living standards - or at least, it used to be. In recent decades, however, productivity has become disconnected from pay. The typical worker's income in the US has barely gone up since 1979, and has actually fallen since 1999, while her productivity has gone up in a nice straightish line. The amount of work done per worker has gone up, but pay hasn't. This means that the proceeds of increased profitability are accruing to capital rather than to labour. The culprit is not clear, but Brynjolfsson and McAfee argue, persuasively, that the force to blame is increased automation.

That is a worrying trend. Imagine an economy in which the 0.1 per cent own the machines, the rest of the 1 per cent manage their operation, and the 99 per cent either do the remaining scraps of unautomatable work, or are unemployed. That is the world implied by developments in productivity and automation. It is Pikettyworld, in which capital is increasingly triumphant over labour. We get a glimpse of it in those quarterly numbers from Apple, about which my robot colleague wrote so evocatively. Apple's quarter was the most profitable of any company in history: $74.6 billion in turnover, and $18 billion in profit. Tim Cook, the boss of Apple, said that these numbers are 'hard to comprehend'. He's right: it's hard to process the fact that the company sold 34,000 iPhones every hour for three months. Bravo - though we should think about the trends implied in those figures. For the sake of argument, say that Apple's achievement is annualised, so their whole year is as much of an improvement on the one before as that quarter was. That would give them $88.9 billion in profits. In 1960, the most profitable company in the world's biggest economy was General Motors. In today's money, GM made $7.6 billion that year. It also employed 600,000 people. Today's most profitable company employs 92,600. So where 600,000 workers would once generate $7.6 billion in profit, now 92,600 generate $89.9 billion, an improvement in profitability per worker of 76.65 times. Remember, this is pure profit for the company's owners, after all workers have been paid. Capital isn't just winning against labour: there's no contest. If it were a boxing match, the referee would stop the fight.

Under the current political and economic dispensation, automation is certain to reinforce these trends. Consider the driverless car being developed by Google. This is both miraculous, in that to an amazing extent it already works, and severely limited, in that there are many routine aspects of driving that it can't manage - it can't, for instance, overtake, or 'merge' with flowing traffic, which is no small issue in the land of the freeway. But imagine for a moment that all the outstanding technical issues are solved, and the fully driverless car is a reality. It would be astonishing, especially when/if it were combined with clean energy sources. Your car would take your children on the school run while they scramble to finish their homework, then come home to take you to work while you do your email, then drive off and self-park somewhere, then pick you up at the end of the day and take you to dinner, then drive you home while you sleep off that last regrettable tequila slammer, and all - thanks to self-co-ordinating networks of traffic information from other driverless cars - cleanly and frictionlessly. It's not clear that the car would even need to be 'your' car: it would just have to be a vehicle that you could summon whenever you needed it. This isn't just an urbanist vision, since there is a lot of immobility and isolation in the countryside that would be immeasurably helped by the driverless car.

The catch: all the money would be going to Google. An entire economy of drivers would disappear. The UK has 231,000 licensed cabs and minicabs alone – and there are far, far more people whose work is driving, and more still for whom driving is not their whole job, but a big part of what they are paid to do. I suspect we're talking about a total well into the millions of jobs. They would all disappear or, just as bad, be effectively demonetised. Say you're paid for a 40-hour week, half of which is driving and the other half loading and unloading goods, filling out delivery forms etc. The driving half just became worthless. Your employer isn't going to pay you the same amount for the other twenty hours' labour as she was paying you for forty, since for twenty of those hours all you're doing is sitting there while your car does the work. That's assuming the other part of your job doesn't get automated too. The world of driverless cars would be amazing, but it would also be a world in which the people who owned the cars, or who managed them, would be doing a lot better than the people who didn't. It would look like the world today, only more so.

This world would likely be one which suffered from severe deflation. If jobs are disappearing, then there is less and less money in most people's pockets, and when that happens, prices fall. This isn't exactly the kind of deflation we are starting to have today in wide swathes of the developed world; that's more to do with the oil price falling at the same time as economies stagnate and consumers lose confidence. But the different deflations could easily overlap. Larry Page, founder and CEO of Google, is sanguine about that, as he recently said in an interview reported in the Financial Times:

He sees another boon in the effect that technology will have on the prices of many everyday goods and services. A massive deflation is coming: 'Even if there's going to be a disruption in people's jobs, in the short term that's likely to be made up by the decreasing cost of things we need, which I think is really important and not being talked about.'

New technologies will make businesses not 10 per cent, but ten times more efficient, he says. Provided that flows through into lower prices: 'I think the things you want to live a comfortable life could get much, much, much cheaper.'

Collapsing house prices could be another part of this equation. Even more than technology, he puts this down to policy changes needed to make land more readily available for construction. Rather than exceeding $1m, there's no reason why the median home in Palo Alto, in the heart of Silicon Valley, shouldn't cost $50,000, he says.

For many, the thought of upheavals like this in their personal economics might seem pie in the sky - not to mention highly disturbing. The prospect of millions of jobs being rendered obsolete, private-home values collapsing and the prices of everyday goods going into a deflationary spiral hardly sounds like a recipe for nirvana. But in a capitalist system, he suggests, the elimination of inefficiency through technology has to be pursued to its logical conclusion.

These chilling views aren't unusual in Silicon Valley and the upper reaches of the overlord class. The tone is inevitabilist, deterministic and triumphalist. There's no point feeling sad about it, this is just what's going to happen. Yes, robots will eat the jobs – all the little people jobs, anyway.

There is a missing piece here. A great deal of modern economic discourse takes it as axiomatic that economic forces are the only ones that matter. This idea has bled into politics too, at least in the Western world: economic forces have been awarded the status of inexorable truths. The idea that a wave of economic change is so disruptive to the social order that a society might rebel against it - that has, it seems, disappeared from the realms of the possible. But the disappearance of 47 per cent of jobs in two decades (as per Frey and Osborne) must be right on the edge of what a society can bear, not so much because of that 47 per cent, as because of the timeframe. Jobs do go away; it's happened many times. For jobs to go away with that speed, however, is a new thing, and the search for historical precedents, for examples from which we can learn, won't take us far. How would this speed of job disappearance, combined with extensive deflation, play out? The truth is nobody knows. In the absence of any template or precedent, the idea that the economic process will just roll ahead like a juggernaut, unopposed by any social or political counter-forces, is a stretch. The robots will only eat all the jobs if we decide to let them.

It's also worth noting what isn't being said about this robotified future. The scenario we're given - the one being made to feel inevitable - is of a hyper-capitalist dystopia. There's capital, doing better than ever; the robots, doing all the work; and the great mass of humanity, doing not much, but having fun playing with its gadgets. (Though if there's no work, there are going to be questions about who can afford to buy the gadgets.) There is a possible alternative, however, in which ownership and control of robots is disconnected from capital in its current form. The robots liberate most of humanity from work, and everybody benefits from the proceeds: we don't have to work in factories or go down mines or clean toilets or drive long-distance lorries, but we can choreograph and weave and garden and tell stories and invent things and set about creating a new universe of wants. This would be the world of unlimited wants described by economics, but with a distinction between the wants satisfied by humans and the work done by our machines. It seems to me that the only way that world would work is with alternative forms of ownership. The reason, the only reason, for thinking this better world is possible is that the dystopian future of capitalism-plus-robots may prove just too grim to be politically viable. This alternative future would be the kind of world dreamed of by William Morris, full of humans engaged in meaningful and sanely remunerated labour. Except with added robots. It says a lot about the current moment that as we stand facing a future which might resemble either a hyper-capitalist dystopia or a socialist paradise, the second option doesn't get a mention.







Books by Title

Books by Author

Books by Topic

Bits of Books To Impress